

4/3-Regel-Wegeventile, vorgesteuert, mit elektrischer Wegrückführung und integrierter Elektronik (OBE)

RD 29083/08.13 Ersetzt: 09.12

1/22

Typ 4WRTE

Nenngröße 10 bis 35 Geräteserie 4X Maximaler Betriebsdruck 350 bar

Inhaltsübersicht

Inhalt	Seite
Merkmale	1
Bestellangaben	2
Symbole	3
Funktion, Schnitt	4
Technische Daten	5, 6
Blockschaltbild der integrierten Elektronik (OBE)	7
Kennlinien	8 14
Abmessungen	15 21
Zubehör	21

Merkmale

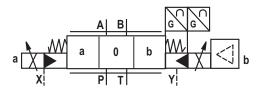
- Vorgesteuertes Regel-Wegeventil, 2-stufig, mit elektrischer Wegrückführung des Hauptsteuerschiebers und integrierter Elektronik (OBE)
- Geeignet zur Lage-, Geschwindigkeits-, Druck- und Kraftregelung
- Regelung von Richtung und Größe eines Volumenstromes
- Vorsteuerventil:
- direktgesteuert, positionsgeregelt, mit Druckrückführung der Steuerdrücke
- Hauptstufe:
 - selbstzentrierend, positionsgeregelt
- Plattenaufbau:
 - Lage der Anschlüsse nach ISO 4401

Informationen zu lieferbaren Ersatzteilen: www.boschrexroth.com/spc

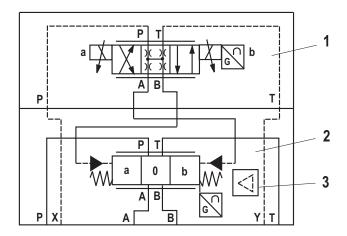
Bestellangaben

1000 l/min

Bestellangaben																	
	4WRTE			<u> </u>	-4X	/6E	Gź	24		K3	31/			*	٦		
Regel-Wegeventil, 2-stu mit elektrischer Wegrück rung und integrierter Ele nik (OBE)	kfüh-										-1				cht	im ungswe	ingaben Klartext erkstoff
Nenngröße													- 1	1 = ' =			htungen htungen
NG10 NG16 NG25 NG27 NG32	= ' = ' = ' = '	16 25 27										A1 F1	1 = ⁵⁾		we	rt/Istwe Sollwer	ittstelle rt ±10 V t/Istwert s 20 mA
NG35	= 5	I											E				schluss
Steuerschiebersymbol	e AllB										K31 :	=			mi	t Geräte	ngsdose estecker
a 0 b	a 0 b												L	eitun	gsc	lose – s	201-804 eparate
	P T									St.	ouerö	Jant					Seite 21 ührung
	XIIII	= E = E1							oł		Bez.		S	teuer	ölz	uführun	g extern g extern
	VA 14 414 1	l = W6							E	=							ng intern
	<u> </u>	= W8	- 1						T	=							g extern g extern
										_							ng intern
		= V = V1							E	Γ=							ng intern ng intern
	I I							G24	ı _				٧				<mark>annung</mark> ng 24 V
Steuerschiebersymbol		V1-:						G24	-					Gie			erventil
$P \rightarrow A : \boldsymbol{q}_{V}$ $B \rightarrow T$ $P \rightarrow B : \boldsymbol{q}_{V}/2$ $A \rightarrow T$	- v					6	6E =		F	Prop	ortion	alm	agne	et mit			NG6 e Spule
Nennvolumenstrom be ⊿p = 10 bar	i Ventildruck	differenz	<u> </u>		4	IX =	(40	bis 4	9: un	verä	indert	e Ei	nbau				0 bis 49 smaße)
NG10													Du	rchfl	uss	scharak	teristik
25 l/min ¹⁾ 50 l/min ²⁾ 90 l/min			= 25 = 50 = 100	P	=							L	inea	r mit	Fei	insteueı	Linear rbereich
NG16 125 l/min ³⁾ 150 l/min ⁴⁾ 180 l/min 220 l/min			= 125 = 150 = 200 = 220														
NG25															•	inear) li	
220 l/min 350 l/min			= 220 = 350	3)	V1-1	25 nu	ır mit	Durcl	hfluss	scha	rakte	ristik	L (l	inear) lie	ear) liet eferbar	erbar
NG27 500 l/min			= 500										•		•	eferbar K ist die	
NG32					Elekt	tronik										be-Sigr	
400 l/min 600 l/min			= 400 = 600		Pin (3).											
NG35																	


= 1000

Symbole


vereinfacht

Beispiel:

Steuerölzuführung extern Steuerölrückführung extern

ausführlich

- 1 Vorsteuerventil
- 2 Hauptventil
- 3 Integrierte Elektronik (OBE)

Funktion, Schnitt

Das 4/3-Regel-Wegeventil ist in Plattenbauweise mit Lageregelung und integrierter Elektronik konzipiert.

Aufhau

Das Ventil besteht aus 3 Hauptbaugruppen:

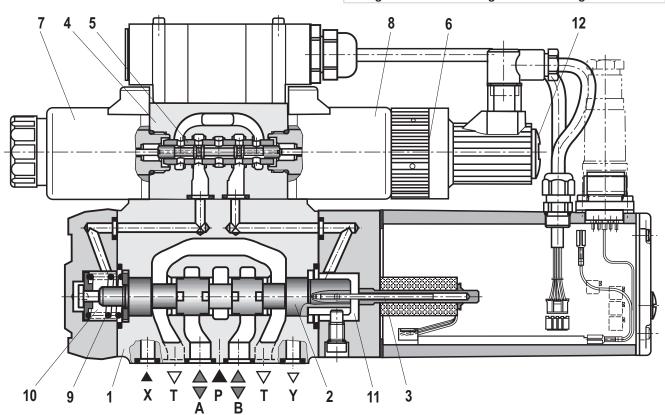
- Gehäuse (1) mit Hauptstufensteuerschieber (2)
- Integrierte Elektronik mit induktivem Wegaufnehmer (3) der Hauptstufe
- Vorsteuerventil (4) mit Steuerschieber-Buchsen-Einheit (5), induktivem Wegaufnehmer (6) und Druckrückführung für Mittelstellung des Hauptstufensteuerschiebers (2)

Funktion:

- Bei unbetätigten Proportionalmagneten (7; 8) Mittelstellung des Hauptstufensteuerschiebers (2) durch Zentrierfeder (9) und Druckrückführung
- Ansteuern des Hauptstufensteuerschiebers (2) über das Vorsteuerventil (4)
 - → der Hauptstufensteuerschieber wird geregelt positioniert
- Steuern des Steuerschiebers des Vorsteuerventils (4) durch Veränderung der Magnetkraft der Proportionalmagneten (7; 8)
- Verknüpfen der Soll- und Istwerte in der integrierten Elektronik
- Steuerölzuführung zum Vorsteuerventil intern über Anschluss P oder extern über Anschluss X
 Steuerölrückführung intern über Anschluss T oder extern über Y zum Behälter

 Bei Sollwert 0 V regelt die Elektronik den Hauptstufensteuerschieber (2) in die Mittelstellung.

Ausfall der Versorgungsspannung:


- Integrierte Elektronik schaltet den Magneten stromlos bei Ausfall der Versorgungsspannung oder Kabelbruch
- Selbständige Druckregelung auf gleichem Niveau in den Steuerräumen (10 und 11) durch das Vorsteuerventil
- Bei Ausfall der Druckversorgung zentrieren des Hauptstufensteuerschiebers durch Zentrierfeder (9)
- Mittelstellung des Hauptstufensteuerschiebers (2)

Achtung:

Der Ausfall der Versorgungsspannung führt zu ruckartigem Stillstand der Regelachse. Die dabei auftretenden Beschleunigungen können Maschinenschaden hervorrufen. Bei den Steuerschiebersymbolen E, E1-, W6- und W8- bringt die Zentrierfeder (9) den Hauptstufensteuerschieber (2) in Mittelstellung, V- und V1-Steuerschieber werden in die Vorzugsrichtung P nach B und A nach T im Toleranzbereich 1 % bis maximal 11 % des Steuerschieberhubes geschaltet.

Wichtiger Hinweis!

Die PG-Verschraubung (12) darf nicht geöffnet werden. Eine mechanische Verstellung der darunterliegenden Justagemutter ist untersagt und beschädigt das Ventil!

Die Nullpunktjustierung ist werkseitig vorgenommen.

Bei Austausch des Vorsteuerventils oder der Elektronik ist die Nullpunktjustierung von unterwiesenem Fachpersonal erneut durchzuführen.

Hinweis!

Veränderung des Nullpunktes kann zu Schäden an der Anlage führen und darf nur von unterwiesenem Fachpersonal durchgeführt werden!

Technische Daten (Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Nenngrößen	NG	10	16	25	27	32	35	
Masse	kg	8,7	11,2	16,8	17	31,5	34	
Einbaulage und Inbetriebnahmehinweise		vorzugs	weise wa	agerecht,	siehe Da	tenblatt 0	7700	
Umgebungstemperaturbereich	°C	–20 bis -	+50					
Lagertemperaturbereich	°C	–20 bis -	+80					
MTTF _d -Werte nach EN ISO 13849	Jahre	150 ¹⁾ (w	veitere An	gaben sie	he Dater	blatt 0801	12)	
Sinusprüfung nach DIN EN 60068-2-6:2008			10 Zyklen, 10200010 Hz mit einer logarithmischen Frequenzänderungsgeschwindigkeit von 1 Oct./min, 5 bis 57 Hz, Amplitude 1,5 mm (p-p), 57 bis 2000 Hz, Amplitude 10g, 3 Achsen					
Randomprüfung nach DIN EN 60068-2-64:2009			202000 Hz, Amplitude 0,05g ² /Hz (10g _{RMS}) 3 Achsen, Testzeit 30 min je Achse					
Schockprüfung nach DIN EN 60068-2-27:2010			Halbsinus 15g / 11 ms, 3 mal in positiver und 3 mal in negativer Richtung je Achse, 3 Achsen					
Feuchte Wärme, zyklisch nach DIN EN 60068-2-30:2006			Variante 2 +25 °C bis +55 °C, 90 % bis 97 % relative Feuchte, 2 Zyklen á 24 Stunden					
hydraulisch (gemessen mit HLP 46, $\vartheta_{\ddot{O}l} = 40^{\circ}$ Maximaler – Vorsteuerventil Steuerölzuführung ²⁾ Betriebsdruck	°C ±5	°C)	15					

- Vorsteuerventil	Steuerölzuführung 2)	bar	25 bis 3	15					
- Hauptventil, Ans	schluss P, A, B	bar	315	350	350	210	350	350	
Maximaler- – Anschluss T Steuerölrückführung, intern Rücklaufdruck		bar	statisch < 10						
	Steuerölrückführung, extern	bar	315	250	250	210	250	250	
- Anschluss Y		bar	statisch	< 10					
Nennvolumenstrom $q_{Vnom} \pm 10\%$ bei $\Delta p = 10$ bar $\Delta p = Ventildruckdifferenz in bar$				125 150 200 220	- 220 350	- - - 500	- - 400 600	- - - 1000	
Empfohlener maximaler Volumenstrom				460	870	1000	1600	3000	
		l/min	7	14	20	20	27	29	
t			siehe Tabelle Seite 6						
Druckflüssigkeitstemperaturbereich (an den Arbeitsanschlüssen des Ventils)				-20 bis +80, vorzugsweise +40 bis +80					
Viskositätsbereich mr			20 bis 380, vorzugsweise 30 bis 45						
Maximal zulässiger Verschmutzungsgrad der Druckflüssigkeit Reinheitsklasse nach ISO 4406 (c)			Vorsteuerventil: Klasse 18/16/13 3) Hauptstufe: Klasse 20/18/15 3)						
Hysterese			≤ 0,1						
Ansprechempfinlichkeit %					6 ≤ 0,05				
Nullpunktabgleich (ab Werk) 4) %									
	- Hauptventil, Ans - Anschluss T - Anschluss Y rom q _{Vnom} ±10% be kdifferenz in bar aximaler Volumens nstrom am Anschlu n Eingangssignal ver estemperaturbereich anschlüssen des V ich iger Verschmutzun EReinheitsklasse n	Steuerölrückführung, extern - Anschluss Y from $q_{Vnom} \pm 10\%$ bei $\Delta p = 10$ bar kdifferenz in bar aximaler Volumenstrom nstrom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315) istemperaturbereich anschlüssen des Ventils) ich iger Verschmutzungsgrad der i Reinheitsklasse nach ISO 4406 (c)	- Hauptventil, Anschluss P, A, B bar - Anschluss T Steuerölrückführung, intern bar Steuerölrückführung, extern bar - Anschluss Y bar rom q _{Vnom} ±10% bei Δp = 10 bar l/min kdifferenz in bar aximaler Volumenstrom l/min nstrom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315) teter bar bei bar l/min strom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315) teter bar bei bar l/min strom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315) teter bar bar l/min strom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315)	- Hauptventil, Anschluss P, A, B bar 315 - Anschluss T Steuerölrückführung, intern bar statisch Steuerölrückführung, extern bar 315 - Anschluss Y bar statisch rom q _{Vnom} ±10% bei Δp = 10 bar l/min - 25 50 100 aximaler Volumenstrom l/min 170 nstrom am Anschluss X bzw. Y bei n Eingangssignal von 0 auf 100 % (315 siehe Tatischerteich anschlüssen des Ventils) ich mm²/s 20 bis 31 iger Verschmutzungsgrad der Reinheitsklasse nach ISO 4406 (c) mlichkeit % ≤ 0,1 nlichkeit % ≤ 0,05	- Hauptventil, Anschluss P, A, B bar 315 350 - Anschluss T Steuerölrückführung, intern bar statisch < 10 Steuerölrückführung, extern bar 315 250 Steuerölrückführung, extern bar 315 250 - Anschluss Y bar statisch < 10 rom q _{Vnom} ±10% bei Δp = 10 bar l/min	- Hauptventil, Anschluss P, A, B bar 315 350 350 - Anschluss T Steuerölrückführung, intern bar statisch < 10 Steuerölrückführung, extern bar 315 250 250 - Anschluss Y bar statisch < 10 - Anschluss Y bar statisch	- Hauptventil, Anschluss P, A, B - Anschluss T Steuerölrückführung, intern Steuerölrückführung, extern - Anschluss Y - Anschluss X - Anschlus X - Anschluss X - Anschluss X - Anschluss X - Anschluss X - A	- Hauptventil, Anschluss P, A, B bar 315 350 350 210 350 - Anschluss T Steuerölrückführung, intern bar statisch < 10 Steuerölrückführung, extern bar 315 250 250 210 250 - Anschluss Y bar statisch < 10 - Anschluss Y	

¹⁾ Mit Steuerschiebertypen E, E1, W6 und W8 : in Steuerschieberlängsrichtung ausreichend positive Überdeckung ohne Schock/Vibrationsbelastung gegeben; Einbauorientierung bezüglich Hauptbeschleunigungsrichtung beachten!

²⁾ Für ein optimales Systemverhalten empfehlen wir bei Drücken über 210 bar eine externe Steuerölversorgung.

³⁾ Die für die Komponenten angegebenen Reinheitsklassen müssen in Hydrauliksystemen eingehalten werden. Eine wirksame Filtration verhindert Störungen und erhöht gleichzeitig die Lebensdauer der Komponenten. Zur Auswahl der Filter siehe www.boschrexroth.com/filter

⁴⁾ Bezogen auf die Druck-Signalkennlinie (Steuerschieber V)

Technische Daten (Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Druckflüssigkeit	Klassifizierung	Geeignete Dichtungsmaterialen	Normen
Mineralöle und artverwandte Kohlenwasserstoffe	HL, HLP	NBR, FKM	DIN 51524
Schwerentflammbar - wasserhaltig	HFC (Fuchs HYDROTHERM 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922

Wichtige Hinweise zu Druckflüssigkeiten!

- Weitere Informationen und Angaben zum Einsatz von anderen Druckflüssigkeiten siehe Datenblatt 90220 oder auf Anfrage!
- Einschränkungen bei den technischen Ventildaten möglich (Temperatur, Druckbereich, Lebensdauer, Wartungsintervalle, etc.)!
- Der Flammpunkt des verwendeten Prozess- und Betriebsmediums muss 40 K über der maximalen Magnetoberflächentemperatur liegen.
- Schwerentflammbar wasserhaltig: Maximale Druckdifferenz je Steuerkante 175 bar. Druckvorspannung am Tankanschluss > 20 % der Druckdifferenz, ansonsten erhöhte Kavitation.
- Lebensdauer im Vergleich zum Betrieb mit Mineralöl HL, HLP 50 % bis 100%

elektrisch

Spannungsart	Gleichspannung
Einschaltdauer %	100
Maximale Spulentemperatur 1) °C	150
Maximale Leistung W	72 (Mittelwert = 24 W)
Elektrischer Anschluss	mit Gerätestecker nach DIN EN 175201-804
Schutzart des Ventils nach EN 60529	IP65 mit montierter und verriegelter Leitungsdose

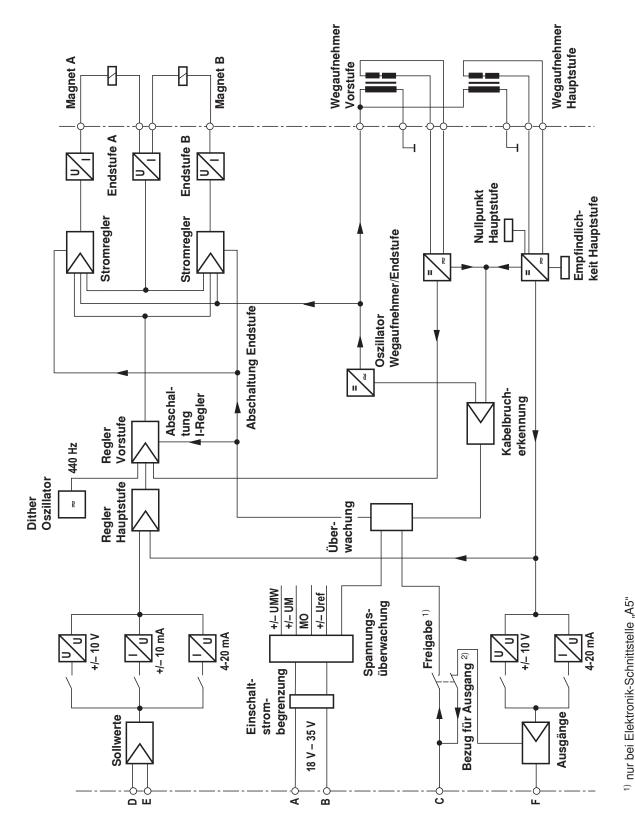
¹⁾ Auf Grund der auftretenden Oberflächentemperaturen der Magnetspulen, sind die europäischen Normen ISO 13732-1 und EN ISO 4413 zu beachten!

Gerätesteckerbelegung	Kontakt	Signal bei A1	Signal bei F1	Signal bei A5			
Versorgungsspannung	A	24 VDC (18 bis 35 VDC); I _{max} = 3 A; Impulslast = 4 A					
	В	0 V					
Bezug (Istwert)	С	Bezugspotential für Istwert (Kontakt "F") Freigabe 4 bis 2					
Differenzverstärkereingang	D	±10 V 4 bis 20 mA ±10		±10 V			
(Sollwert)	Е	0 V Bezugspotentional (Kontakt "D") 0 V Bezugspote für Pin D und F					
Messausgang (Istwert)	F	±10 V	4 bis 20 mA	±10 V			
	PE	mit Kühlkörper und Ventilgehäuse verbunden					

Sollwert: Bezugspotenzial an E und positiver Sollwert an D bewirken Volumenstrom von $P \rightarrow A$ und $B \rightarrow T$.

Bezugspotenzial an E und negativer Sollwert an D bewirken Volumenstrom von $P \rightarrow B$ und $A \rightarrow T$.

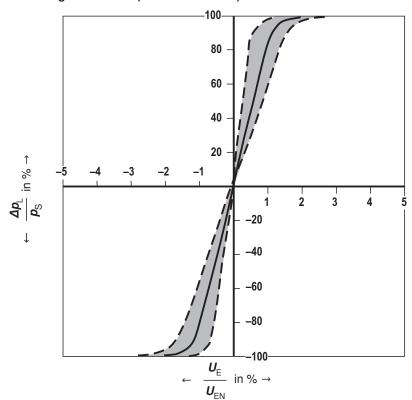
Anschlusskabel: Empfehlung: – bis 25 m Leitungslänge: Typ LiYCY 7 x 0,75 mm²


bis 50 m Leitungslänge: Typ LiYCY 7 x 1,0 mm²

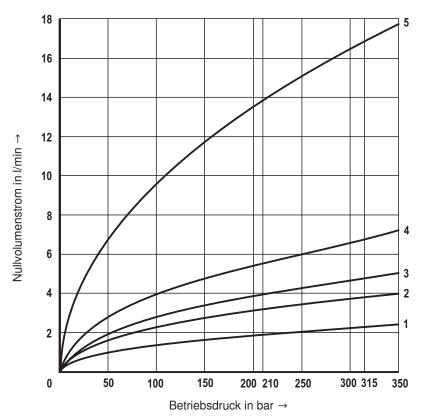
Schirm nur auf der Versorgungsseite auf PE legen.

Hinweis: Über eine Ventilelektronik herausgeführte elektrische Signale (z. B. Istwert) dürfen nicht für das

Abschalten von sicherheitsrelevanten Maschinenfunktionen benutzt werden!


Blockschaltbild der integrierten Elektronik (OBE) Typ VT 13060-3X/...

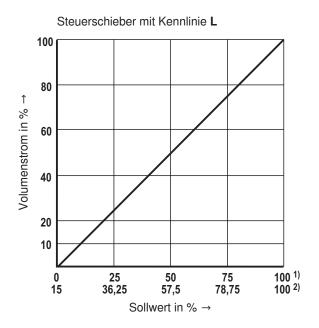
in bei Elektronik-Schnittstellen "A1" und "F1"


Kennlinien (gemessen mit HLP46, $\vartheta_{\ddot{O}I} = 40 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$ und $p = 100 \, \text{bar}$)

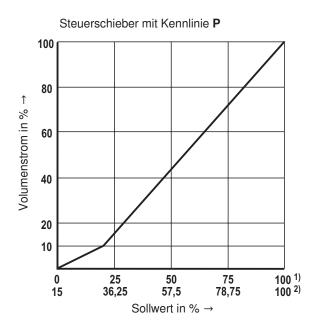
Druck-Signalkennlinie (Steuerschieber V)

Steuerdruck $p_S = 100$ bar

Nullvolumenstrom der Hauptstufe (Steuerschieber V) mit Vorsteuerventil



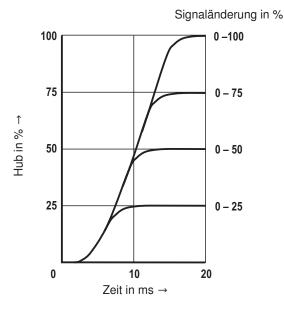
- 1 Nenngröße 10
- 2 Nenngröße 16
- 3 Nenngröße 25, 27
- 4 Nenngröße 32
- 5 Nenngröße 35


Kennlinien (gemessen mit HLP46, $\vartheta_{\ddot{O}I} = 40 \text{ °C } \pm 5 \text{ °C}$)

Volumenstrom-Sollwertfunktion bei z. B. P \to A / B \to T 10 bar Ventildruckdifferenz oder P \to A oder A \to T 5 bar pro Steuerkante

Steuerschieber E, W, und V

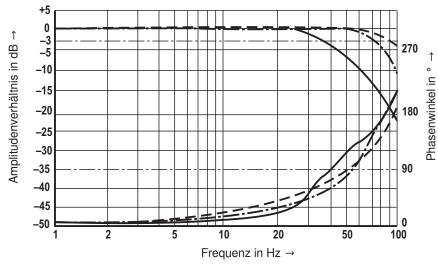
 $^{^{\}rm 1)}$ positive Überdeckung 0 bis 0,5 % bei Steuerschieber ${\bf V}$


 $^{^{1)}}$ positive Überdeckung 0 bis 0,5 % bei Steuerschieber ${f V}$

²⁾ positive Überdeckung 15 % bei Steuerschiebern **E** und **W**

²⁾ positive Überdeckung 15 % bei Steuerschiebern **E** und **W**

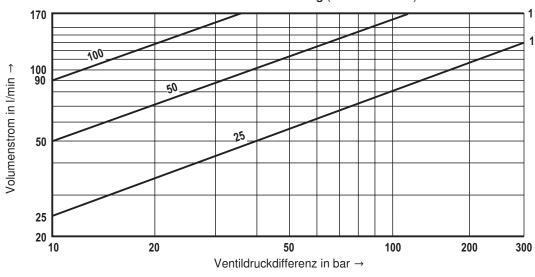
Kennlinien: NG10 (gemessen mit HLP46, $\vartheta_{\ddot{o}I} = 40 \text{ °C} \pm 5 \text{ °C}$)


Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen

gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar

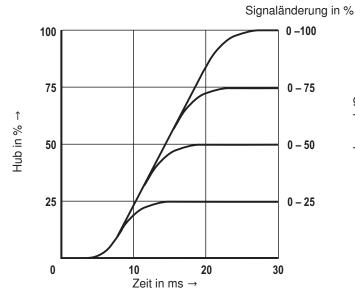
Frequenzgang-Kennlinien



gemessen bei:

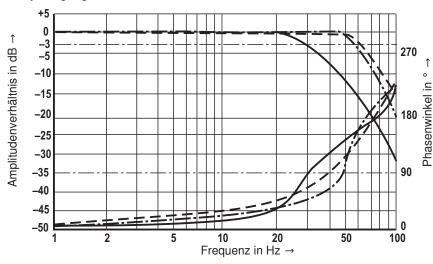
- VorsteuerventilAnschluss X = 100 bar
- Hauptventil Anschluss P = 10 bar

Signal ±5 %Signal ±25 %Signal ±100 %


Volumenstrom-Lastfunktion bei maximaler Ventilöffnung (Toleranz ±10 %)

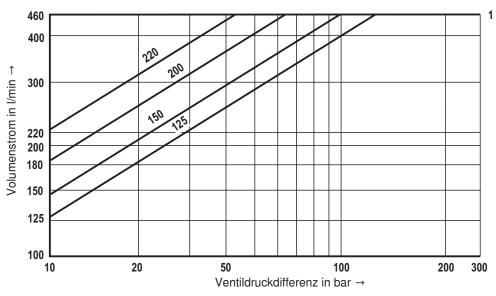
1 empfohlene Volumenstrombegrenzung (Strömungsgeschwindigkeit 30 m/s)

Kennlinien: NG16 (gemessen mit HLP46, $\vartheta_{\ddot{o}I} = 40 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$)


Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen

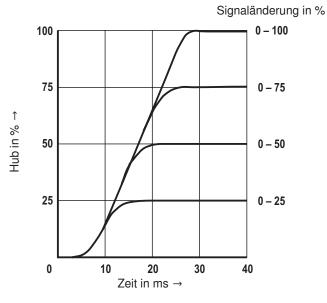
gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar


Frequenzgang-Kennlinien

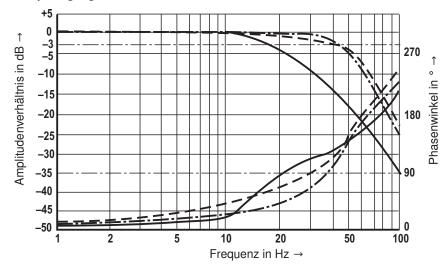
gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- Hauptventil Anschluss P = 10 bar


Volumenstrom-Lastfunktion bei maximaler Ventilöffnung (Toleranz ±10 %)

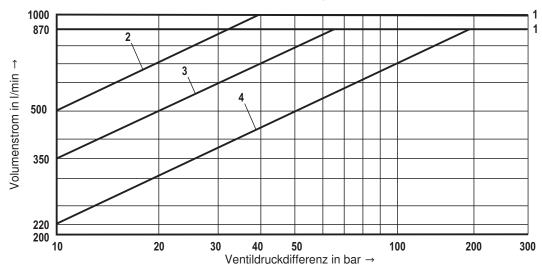
1 empfohlene Volumenstrombegrenzung (Strömungsgeschwindigkeit 30 m/s)

Kennlinien: NG25 und 27 (gemessen mit HLP46, $\vartheta_{\ddot{o}I}$ = 40 °C ±5 °C)


Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen

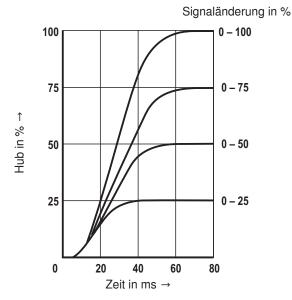
gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar


Frequenzgang-Kennlinien

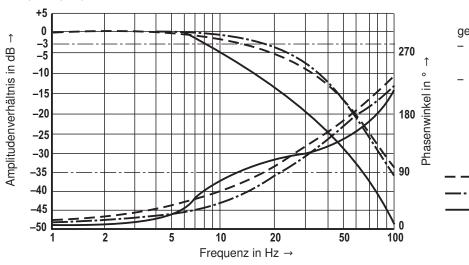
gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar
- Signal ±5 %Signal ±25 %Signal ±100 %


Volumenstrom-Lastfunktion bei maximaler Ventilöffnung (Toleranz ±10 %)

- 1 empfohlene Volumenstrombegrenzung (Strömungsgeschwindigkeit 30 m/s)
- 2 500 NG27
- 3 350 NG25
- 4 220 NG25

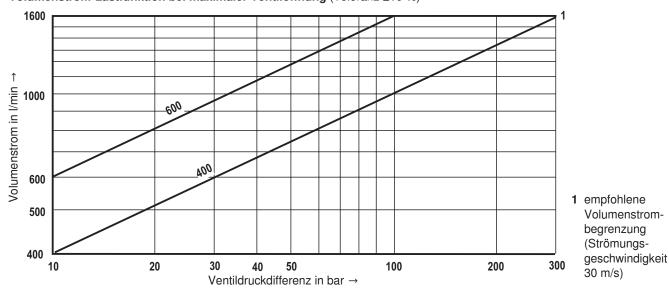
Kennlinien: NG32 (gemessen mit HLP46, $\vartheta_{\ddot{o}I} = 40 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$)


Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen

gemessen bei:

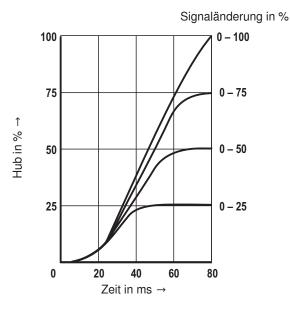
- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar

Frequenzgang-Kennlinien



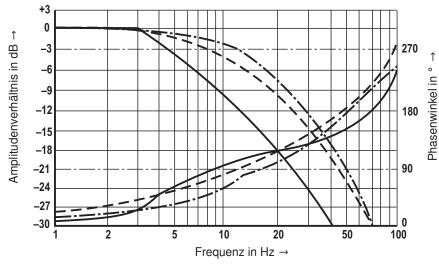
gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- Hauptventil Anschluss P = 10 bar



Volumenstrom-Lastfunktion bei maximaler Ventilöffnung (Toleranz ±10 %)

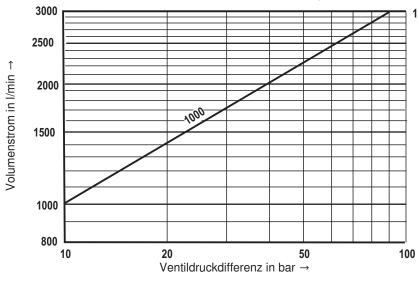
Kennlinien: NG35 (gemessen mit HLP46, $\vartheta_{\ddot{O}I}$ = 40 °C ±5 °C)


Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen

gemessen bei:

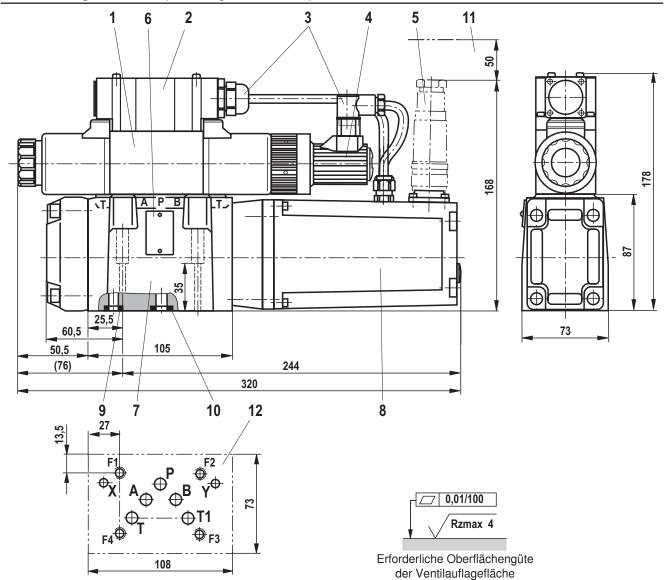
- Vorsteuerventil
 Anschluss X = 100 bar
- HauptventilAnschluss P = 10 bar

Frequenzgang-Kennlinien

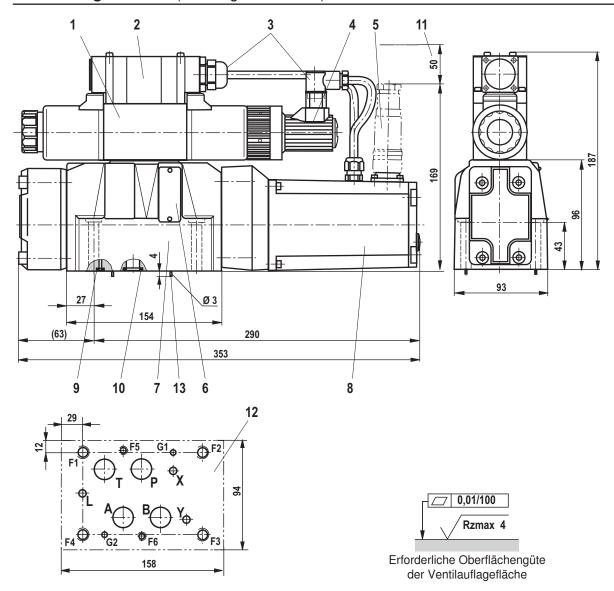


gemessen bei:

- VorsteuerventilAnschluss X = 100 bar
- HauptventilAnschluss P = 10 bar

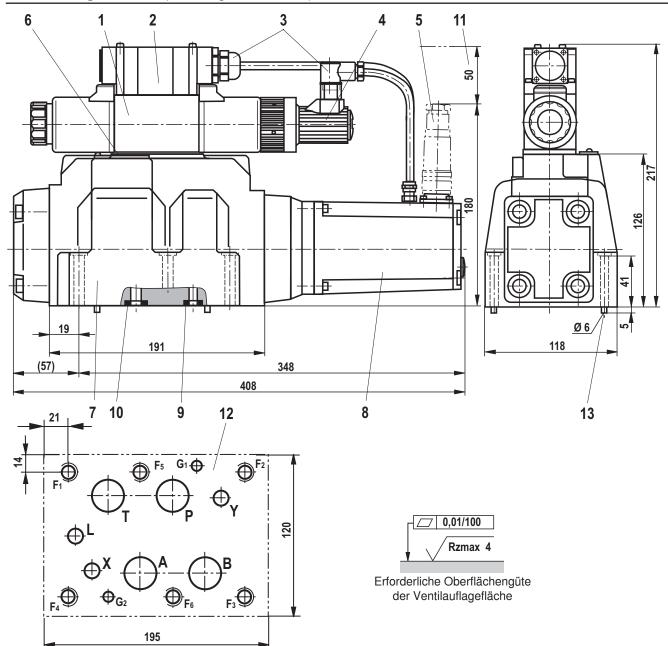

— — — Signal ±5 %— Signal ±25 %— Signal ±100 %

1 empfohlene Volumenstrombegrenzung (Strömungsgeschwindigkeit 30 m/s)


Abmessungen: NG10 (Maßangaben in mm)

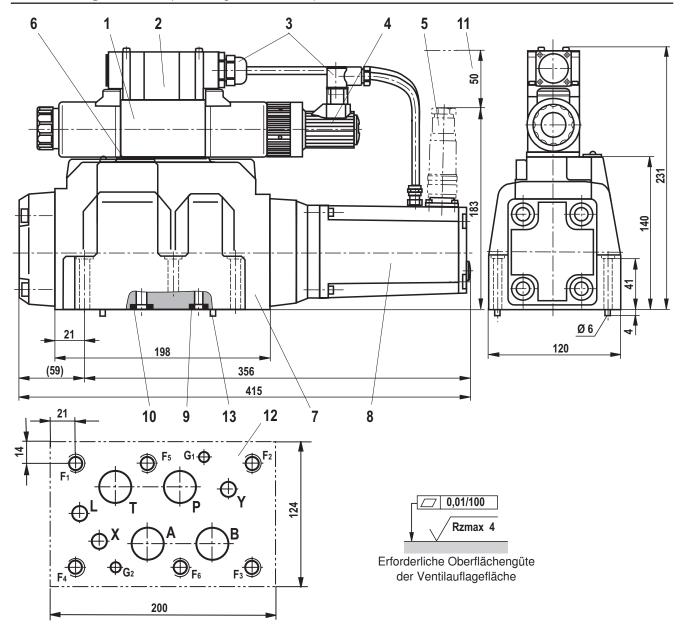
- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- 5 Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Intergrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)

- 9 Gleiche Dichtringe für Anschlüsse X, Y
- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T, T1
- **11** Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-05-05-0-05 (Anschlüsse X, Y nach Bedarf)


Abmessungen: NG16 (Maßangaben in mm)

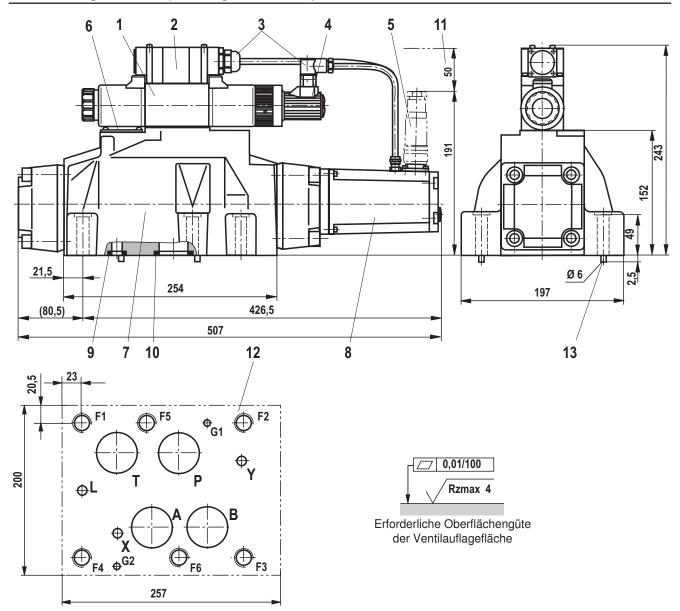
- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- **5** Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Intergrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)

- 9 Gleiche Dichtringe für Anschlüsse X, Y
- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T, T1
- **11** Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-07-07-0-05 (Anschlüsse X, Y nach Bedarf) abweichend von der Norm:
 - Anschlüsse A, B, P T Ø 20 mm
- 13 Spannstift


Abmessungen NG25 (Maßangaben in mm)

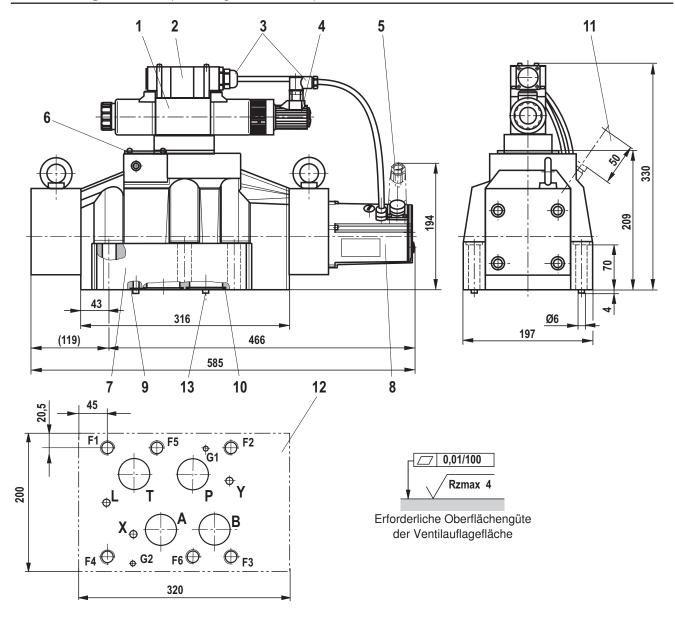
- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- 5 Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Integrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)
- 9 Gleiche Dichtringe für Anschlüsse X, Y und L

- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T
- 11 Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-08-08-0-05 (Anschlüsse X, Y und L nach Bedarf)
- 13 Spannstift


Abmessungen NG27 (Maßangaben in mm)

- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- **5** Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Intergrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)

- 9 Gleiche Dichtringe für Anschlüsse X, Y und L
- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T
- 11 Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-08-08-0-05 (Anschlüsse X, Y und L nach Bedarf) abweichend von der Norm:
 - Anschlüsse A, B, T und P Ø32 mm
- 13 Spannstift


Abmessungen NG32 (Maßangaben in mm)

- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- **5** Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Integrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)

- 9 Gleiche Dichtringe für Anschlüsse X, Y und L
- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T
- **11** Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-10-09-0-05 (Anschlüsse X, Y und L nach Bedarf) abweichend von der Norm:
 - Anschlüsse A, B, T und P Ø38 mm
- 13 Spannstift

Abmessungen NG35 (Maßangaben in mm)

- 1 Vorsteuerventil
- 2 Elektrischer Anschluss
- 3 Verkabelung und Leitungsdose
- 4 Induktiver Wegaufnehmer (Vorsteuerventil)
- **5** Leitungsdose 6-polig + PE (separate Bestellung, siehe Seite 21)
- 6 Typschild
- 7 Hauptventil
- 8 Integrierte Elektronik (OBE) und induktiver Wegaufnehmer (Hauptventil)

- 9 Gleiche Dichtringe für Anschlüsse X, Y und L
- 10 Gleiche Dichtringe für Anschlüsse A, B, P, T
- **11** Platzbedarf für Anschlusskabel und zum Entfernen der Leitungsdose
- 12 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-10-09-0-05 (Anschlüsse X, Y und L nach Bedarf) abweichend von der Norm:
 - Anschlüsse A, B, T und P Ø50 mm
- 13 Spannstift

Abmessungen

Zylinderschrauben		Materialnummer
NG10	4x ISO 4762 - M6 x 45 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 13,5 Nm ±10 % oder 4x ISO 4762 - M6 x 45 - 10.9 Anziehdrehmoment M_A = 15,5 Nm ±10 %	R913000258
NG16	2x ISO 4762 - M6 x 60 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 12,2 Nm ±10 % 4x ISO 4762 - M10 x 60 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 58 Nm ±20 % oder 2x ISO 4762 - M6 x 60 - 10.9 Anziehdrehmoment M_A = 15,5 Nm ±10 % 4x ISO 4762 - M10 x 60 - 10.9 Anziehdrehmoment M_A = 75 Nm ±20 %	R913000115 R913000116
NG25 und 27	6x ISO 4762 - M12 x 60 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 100 Nm ±20 % oder 6x ISO 4762 - M12 x 60 - 10.9 Anziehdrehmoment M_A = 130 Nm ±20 %	R913000121
NG32	6x ISO 4762 - M20 x 80 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 340 Nm ±20 % oder 6x ISO 4762 - M20 x 80 - 10.9 Anziehdrehmoment M_A = 430 Nm ±20 %	R901035246
NG35	6x ISO 4762 - M20 x 100 - 10.9-flZn-240h-L Anziehdrehmoment M_A = 465 Nm ±20 % oder 6x ISO 4762 - M20 x 100 - 10.9 Anziehdrehmoment M_A = 610 Nm ±20 %	R913000386

Hinweis: Das Anziehdrehmoment der Zylinderschrauben bezieht sich auf den maximalen Betriebsdruck!

Anschlussplatten	Datenblatt
NG10	45054
NG16	45056
NG25 und 27	45058
NG32 und 35	45060

Zubehör (nicht im Lieferumfang)

Leitungsdosen		Materialnummer		
Leitungsdose für Regelventil	DIN EN 175201-804, siehe Datenblatt 08006	z. B. R900021267 (Kunststoff)		
		z. B. R900223890 (Metall)		

Notizen

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.